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Contents

Every Sturmian word can be factorized as a product of
minimal squares.
If half of each square is deleted, the resulting word is Sturmian.
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Sturmian words

Rα(x) = {x + α}: rotation by irrational angle α ∈ (0, 1) on
the circle [0, 1).
Divide the circle: I0 = [0, 1− α), I1 = [1− α, 1).
sx ,α = a0a1 · · · , α slope, x intercept:

an =

{
0, if Rn

α(x) ∈ I0,
1, if Rn

α(x) ∈ I1.

Language L(α) independent of x .
Every factor w ∈ L(α) has a unique interval [w ] on the circle.

sx,α begins with w if and only if x ∈ [w ].

Assume: α < 1/2, so 00 ∈ L(α) and 11 /∈ L(α).
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Minimal squares

Let s be a Sturmian word of slope [0; a + 1, b + 1, . . .].
Between two blocks 1, there is 0a or 0a+1.
Between two blocks 10a+1, there is (10a)b or (10a)b+1.

Any position in s begins with one of the six squares:

S2
1 = 02, S2

4 = (10a)2,

S2
2 = (010a−1)2, S2

5 = (10a+1(10a)b)2,

S2
3 = (010a)2, S2

6 = (10a+1(10a)b+1)2,

The squares are minimal: they do not have proper square
prefixes.
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Minimal squares in Fibonacci

Fibonacci word f : a = 1, b = 0.

S2
1 = 00, S2

4 = 1010,

S2
2 = 0101, S2

5 = 100100,

S2
3 = 010010, S2

6 = 1001010010.

These square roots appear in the footer of every slide.
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The square root map

Every Sturmian word s is a product of these six minimal
squares:

s = X 2
1X

2
2X

2
3 · · ·

Example: Fibonacci

f = 01001010010010100101001001010010 · · ·
= (010)2 · (100)2 · (10)2 · (01)2 · 02 · (10010)2 · · ·
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The square root map

s = X 2
1X

2
2X

2
3 · · ·√

s = X1X2X3 · · ·
The square root map deletes half of each square.

Example: Fibonacci

f = (010)2 · (100)2 · (10)2 · (01)2 · 02 · (10010)2 · · · ,
√
f = 010 · 100 · 10 · 01 · 0 · 10010 · · ·
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Special mapping ψ

ψ : [0, 1)→ [0, 1), ψ(x) = 1
2(x + 1− α)

ψ halves the distance between x and 1− α on the interval
where x belongs to.

0

1 − α

x

ψ(x)

yψ(y)

0, 01, 010, 10, 100, 10010 Jarkko Peltomäki and Markus Whiteland 8



The main result

Theorem
Let sx ,α be a Sturmian word of slope α with intercept x. Then

√
sx ,α = sψ(x),α.

Surprisingly the square root map preserves the language of a
Sturmian word.
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The proof

ψ and the minimal square roots Si have the following key
properties:

Square root property

ψ([S2
i ]) ⊆ [Si ]

Shift property

∀x ∈ [S2
i ] : ψ({x + 2|Si |α}) = {ψ(x) + |Si |α}
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Fixed points

The only fixed point of ψ is 1− α.
Sturmian words with intercept 1− α: 01cα, 10cα.

Example: Fibonacci

01f = 0101001010010010100101001001010010 · · ·
= (01)202(10)2(010)2(10010)2(01)202 · · · ,

√
01f = 01 · 0 · 10 · 010 · 10010 · 01 · 0 · · · = 01f .
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Non-Sturmian fixed points

Optimal squareful word: aperiodic word where one of the six
minimal squares begins at any position.

Studied and characterized by Kalle Saari.
The square root map makes sense for these words too.

Sturmian words form a proper subset.

Theorem
There exists a non-Sturmian optimal squareful words which is a
fixed point of the square root map.

Theorem
There exists a minimal, aperiodic subshift Ω such that for all
w ∈ Ω either

√
w ∈ Ω or

√
w is periodic.

The square root of an aperiodic word can be periodic!
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Open problem

There exists non-Sturmian optimal squareful words whose
language is preserved under the square root map.
Sturmian words satisfy a stronger property.√

Ωα ⊆ Ωα for a Sturmian subshift Ωα.

Conjecture
Let Ω be a minimal subshift of optimal squareful words. If√

Ω ⊆ Ω, then Ω is Sturmian.

Thank you for your attention!
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