# A square root map on Sturmian words

#### Jarkko Peltomäki and Markus Whiteland

Turku Centre for Computer Science University of Turku

17.9.2015

### Contents

- Every Sturmian word can be factorized as a product of minimal squares.
- If half of each square is deleted, the resulting word is Sturmian.

### Sturmian words

- $R_{\alpha}(x) = \{x + \alpha\}$ : rotation by irrational angle  $\alpha \in (0, 1)$  on the circle [0, 1).
- Divide the circle:  $I_0 = [0, 1 \alpha)$ ,  $I_1 = [1 \alpha, 1)$ .
- $s_{x,\alpha} = a_0 a_1 \cdots$ ,  $\alpha$  slope, x intercept:

$$a_n = \begin{cases} 0, & \text{if } R_{\alpha}^n(x) \in I_0, \\ 1, & \text{if } R_{\alpha}^n(x) \in I_1. \end{cases}$$

- Language  $\mathcal{L}(\alpha)$  independent of x.
- Every factor  $w \in \mathcal{L}(\alpha)$  has a unique interval [w] on the circle.
  - $s_{x,\alpha}$  begins with w if and only if  $x \in [w]$ .
- Assume:  $\alpha < 1/2$ , so  $00 \in \mathcal{L}(\alpha)$  and  $11 \notin \mathcal{L}(\alpha)$ .

## Minimal squares

- Let s be a Sturmian word of slope  $[0; a+1, b+1, \ldots]$ .
  - Between two blocks 1, there is  $0^a$  or  $0^{a+1}$ .
  - Between two blocks  $10^{a+1}$ , there is  $(10^a)^b$  or  $(10^a)^{b+1}$ .
- Any position in *s* begins with one of the six squares:

$$S_1^2 = 0^2,$$
  $S_4^2 = (10^a)^2,$   $S_2^2 = (010^{a-1})^2,$   $S_5^2 = (10^{a+1}(10^a)^b)^2,$   $S_3^2 = (010^a)^2,$   $S_6^2 = (10^{a+1}(10^a)^{b+1})^2,$ 

 The squares are minimal: they do not have proper square prefixes.

# Minimal squares in Fibonacci

• Fibonacci word f: a = 1, b = 0.

$$S_1^2 = 00,$$
  $S_4^2 = 1010,$   $S_2^2 = 0101,$   $S_5^2 = 100100,$   $S_3^2 = 010010,$   $S_6^2 = 1001010010.$ 

• These square roots appear in the footer of every slide.

## The square root map

 Every Sturmian word s is a product of these six minimal squares:

$$s=X_1^2X_2^2X_3^2\cdots$$

### Example: Fibonacci

$$f = 01001010010010100101001001010010 \cdots$$
  
=  $(010)^2 \cdot (100)^2 \cdot (10)^2 \cdot (01)^2 \cdot 0^2 \cdot (10010)^2 \cdots$ 

## The square root map

- $s = X_1^2 X_2^2 X_3^2 \cdots$
- $\sqrt{s} = X_1 X_2 X_3 \cdots$
- The square root map deletes half of each square.

### Example: Fibonacci

$$f = (010)^2 \cdot (100)^2 \cdot (10)^2 \cdot (01)^2 \cdot 0^2 \cdot (10010)^2 \cdots,$$
  
$$\sqrt{f} = 010 \cdot 100 \cdot 10 \cdot 01 \cdot 0 \cdot 10010 \cdots$$

# Special mapping $\psi$

- $\psi: [0,1) \to [0,1), \psi(x) = \frac{1}{2}(x+1-\alpha)$
- $\psi$  halves the distance between x and  $1-\alpha$  on the interval where x belongs to.



### The main result

#### Theorem

Let  $s_{x,\alpha}$  be a Sturmian word of slope  $\alpha$  with intercept x. Then

$$\sqrt{s_{x,\alpha}} = s_{\psi(x),\alpha}.$$

Surprisingly the square root map preserves the language of a Sturmian word.

## The proof

•  $\psi$  and the minimal square roots  $S_i$  have the following key properties:

### Square root property

$$\psi([S_i^2])\subseteq [S_i]$$

## The proof

•  $\psi$  and the minimal square roots  $S_i$  have the following key properties:

### Square root property

$$\psi([S_i^2])\subseteq [S_i]$$

### Shift property

$$\forall x \in [S_i^2] \colon \psi(\{x+2|S_i|\alpha\}) = \{\psi(x) + |S_i|\alpha\}$$

## Fixed points

- The only fixed point of  $\psi$  is  $1 \alpha$ .
- Sturmian words with intercept  $1 \alpha$ :  $01c_{\alpha}$ ,  $10c_{\alpha}$ .

### Example: Fibonacci

$$01f = 010100101001001010010010010010010010 \cdots$$

$$= (01)^{2}0^{2}(10)^{2}(010)^{2}(10010)^{2}(01)^{2}0^{2} \cdots,$$

$$\sqrt{01f} = 01 \cdot 0 \cdot 10 \cdot 010 \cdot 10010 \cdot 01 \cdot 0 \cdots = 01f.$$

## Non-Sturmian fixed points

- Optimal squareful word: aperiodic word where one of the six minimal squares begins at any position.
  - Studied and characterized by Kalle Saari.
- The square root map makes sense for these words too.
  - Sturmian words form a proper subset.

## Non-Sturmian fixed points

- Optimal squareful word: aperiodic word where one of the six minimal squares begins at any position.
  - Studied and characterized by Kalle Saari.
- The square root map makes sense for these words too.
  - Sturmian words form a proper subset.

#### $\mathsf{Theorem}$

There exists a non-Sturmian optimal squareful words which is a fixed point of the square root map.

## Non-Sturmian fixed points

- Optimal squareful word: aperiodic word where one of the six minimal squares begins at any position.
  - Studied and characterized by Kalle Saari.
- The square root map makes sense for these words too.
  - Sturmian words form a proper subset.

#### Theorem

There exists a non-Sturmian optimal squareful words which is a fixed point of the square root map.

#### $\mathsf{Theorem}$

There exists a minimal, aperiodic subshift  $\Omega$  such that for all  $w \in \Omega$  either  $\sqrt{w} \in \Omega$  or  $\sqrt{w}$  is periodic.

The square root of an aperiodic word can be periodic!



# Open problem

- There exists non-Sturmian optimal squareful words whose language is preserved under the square root map.
- Sturmian words satisfy a stronger property.
  - $\sqrt{\Omega_{\alpha}} \subseteq \Omega_{\alpha}$  for a Sturmian subshift  $\Omega_{\alpha}$ .

# Open problem

- There exists non-Sturmian optimal squareful words whose language is preserved under the square root map.
- Sturmian words satisfy a stronger property.
  - $\sqrt{\Omega_{\alpha}} \subseteq \Omega_{\alpha}$  for a Sturmian subshift  $\Omega_{\alpha}$ .

### Conjecture

Let  $\Omega$  be a minimal subshift of optimal squareful words. If  $\sqrt{\Omega} \subseteq \Omega$ , then  $\Omega$  is Sturmian.

# Open problem

- There exists non-Sturmian optimal squareful words whose language is preserved under the square root map.
- Sturmian words satisfy a stronger property.
  - $\sqrt{\Omega_{\alpha}} \subseteq \Omega_{\alpha}$  for a Sturmian subshift  $\Omega_{\alpha}$ .

### Conjecture

Let  $\Omega$  be a minimal subshift of optimal squareful words. If  $\sqrt{\Omega} \subseteq \Omega$ , then  $\Omega$  is Sturmian.

Thank you for your attention!