
All Growth Rates of Abelian Exponents Are Attained by
Infinite Binary Words

Jarkko Peltomäki

The Turku Collegium for Science and Medicine
Department of Mathematics and Statistics

University of Turku

24.8.2020

Joint work with Markus A. Whiteland

Jarkko Peltomäki All Growth Rates of Abelian Exponents Are Attained by . . . 1 / 16



Preliminaries

A word is a string of symbols, e.g., 00101. They can be infinitely long.

Here we focus on binary words, i.e., words written using 0 and 1.
If u and v are words, then their concatenation is uv . For example, if
u = 00 and v = 101, then uv = 00101.
By a power, we mean a word obtained by concatenating it with itself:
u2 = uu, u3 = uuu, etc.
Two words u and v are abelian equivalent if they are permutations of
each other. For example, 0011 and 1001 are abelian equivalent, 0001
and 1001 are not.
An abelian N-power is a word u0u1 · · · uN−1 if u0, u1, . . ., uN−1 are
abelian equivalent. For example, 010 · 100 · 010 · 001 is an abelian
4-power.

I The common length |u0| is called the period of the abelian N-power.
I The number N is the exponent.
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Research on abelian powers

Study of abelian powers has been a hot topic in combinatorics on
words recently.

Most research concerns avoiding abelian powers, that is, finding
infinite words that contain no abelian N-power for some N.
Some important classes of infinite words (for example Sturmian
words) always contain abelian powers of arbitrarily high exponent.
To understand abelian powers better in such words, we can ask
instead: how fast do the exponents grow? For a prescibed function f ,
does there exist an infinite word having growth rate f ?

Jarkko Peltomäki All Growth Rates of Abelian Exponents Are Attained by . . . 3 / 16



Research on abelian powers

Study of abelian powers has been a hot topic in combinatorics on
words recently.
Most research concerns avoiding abelian powers, that is, finding
infinite words that contain no abelian N-power for some N.

Some important classes of infinite words (for example Sturmian
words) always contain abelian powers of arbitrarily high exponent.
To understand abelian powers better in such words, we can ask
instead: how fast do the exponents grow? For a prescibed function f ,
does there exist an infinite word having growth rate f ?

Jarkko Peltomäki All Growth Rates of Abelian Exponents Are Attained by . . . 3 / 16



Research on abelian powers

Study of abelian powers has been a hot topic in combinatorics on
words recently.
Most research concerns avoiding abelian powers, that is, finding
infinite words that contain no abelian N-power for some N.
Some important classes of infinite words (for example Sturmian
words) always contain abelian powers of arbitrarily high exponent.

To understand abelian powers better in such words, we can ask
instead: how fast do the exponents grow? For a prescibed function f ,
does there exist an infinite word having growth rate f ?

Jarkko Peltomäki All Growth Rates of Abelian Exponents Are Attained by . . . 3 / 16



Research on abelian powers

Study of abelian powers has been a hot topic in combinatorics on
words recently.
Most research concerns avoiding abelian powers, that is, finding
infinite words that contain no abelian N-power for some N.
Some important classes of infinite words (for example Sturmian
words) always contain abelian powers of arbitrarily high exponent.
To understand abelian powers better in such words, we can ask
instead: how fast do the exponents grow? For a prescibed function f ,
does there exist an infinite word having growth rate f ?

Jarkko Peltomäki All Growth Rates of Abelian Exponents Are Attained by . . . 3 / 16



Growth rate of abelian exponent

Let us formalize the notion of growth rate of abelian exponents of an
infinite word w.

Definition
Let w be an infinite word and Aew(m) be the maximum exponent of an
abelian power of period m occurring in w.

Definition
Let w be an infinite word and f : N→ R a function. We say that the
abelian exponents of w have growth rate f if
lim supm→∞ Aew(m)/f (m) = 1.
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Results on growth rates

Fici et al. (2016): the growth rate for Sturmian words is always at
least linear. Moreover, Sturmian words attain growth rates θm for θ
large enough.

P.-Whiteland (2019): all growth rates θm, θ > 0, are attainable, but
sometimes 3 letters are required.
Here we improve these results and show that all (reasonable) growth
speeds are attained by infinite binary words.
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Main result

Theorem
Let f : N→ R be an unbounded increasing function. Then there exists an
infinite binary word w such that the abelian exponents of w have growth
rate f .
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Construction

Let f : N→ R be an unbounded increasing function, and let us
construct the binary word w having growth rate f for the abelian
exponents.

Let (xi) be a sequence of words such that |xi+1| > |xi | for all i (we
will put more requirements on (xi) as we progress).
Set

Xi = x bf (|xi |)c
i and w =

∞∏
i=1

Xi .

The abelian exponents of w grow at least as fast as f .
It suffices to show that it does not grow faster than f .
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Setup

Let z = u0 · · · ue−1 be an abelian e-power of period m in w.

Say |xj | ≤ m < |xj+1|.
It suffices to show that e ≤ bf (|xj |)c+ constant for all j large enough.
Indeed,

Aew(m)
f (m) ≤

bf (|xj |)c+ constant
f (|xj |)

j→∞−−−→ 1

meaning that the abelian exponents of w grow at most as fast as f .
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Locations for z

Recall that w =
∏∞

i=1 Xi , Xi = x bf (|xi |)c
i , and |xj | ≤ m < |xj+1|.

The abelian power z of period m could be located:
I inside a block Xi ,
I on the boundary of two consecutive blocks Xi and Xi+1,
I or it could contain a block Xi .
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z inside Xi

We have no restrictions on xi , so xi could contain abelian powers of
arbitrarily high exponent.

Theorem (Dekking (1979))
There exists an integer N such that for all n there exists a binary word of
length n containing no abelian N-powers.

By choosing xi according to this theorem, we see that if z is in xi ,
then e < constant.
But: Dekking’s result doesn’t tell us what happens if we concatenate
xi with itself.
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z inside Xi , cyclic avoidance of abelian powers

The word 0010 avoids abelian 3-powers, but (0010)2 = 00100010
does not.

Definition
A word v avoids abelian N-powers cyclically if each abelian N-power in the
infinite word vvv · · · has period at least |v |.

Theorem (P.-Whiteland)
There is an integer N such that there exist arbitrarily long binary words
that cyclically avoid abelian N-powers.

By choosing xi according to this theorem, we see that if z is in Xi ,
then e < constant or e ≤ bf (|xj |)c.
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z on the boundary between Xi and Xi+1

Recall that z = u0 · · · ue−1 with |xj | ≤ m = |u0| < |xj+1|.

Say u0 · · · ut−1 occurs at the end of Xi and ut+1 · · · ue−1 occur at the
beginning of Xi+1. Assume j ≤ i .
The exponent of u0 · · · ut−1 is bounded by a constant or bf (|xj |)c by
the previous argument.
The exponent of ut+1 · · · ue−1 is bounded by a constant by the
previous argument (since m < |xi+1|).
Hence e < bf (|xj |)c+ constant.
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Remaining cases

What remains:
I z on the boundary between Xi and Xi+1 and i < j ,
I z contains Xi .

Solution:
I Make (|xi |) grow so fast that z cannot contain Xi for i > j and that

the initial part X1 · · ·Xj−1 has so small length that the exponent of z is
negligible compared to bf (|xj |)c (details omitted).
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Avoiding abelian powers cyclically

Definition
A word v avoids abelian N-powers cyclically if each abelian N-power in the
infinite word vvv · · · has period at least |v |.

We produce arbitrarily long words that avoid abelian N-powers
cyclically by iterating morphisms on words.
Consider for example the morphism σ : 0 7→ 0001, 1 7→ 101. Then

I σ(0) = 0001,
I σ(σ(0)) = 000100010001101,
I σ3(0) = 0001000100011010001000100011010001000100011011010001101,
I . . .

Definition
A morphism σ is abelian N-free if σ(w) is abelian N-free for all abelian
N-free words w .
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Avoiding abelian powers cyclically

Theorem (P.-Whiteland (2020))
Let σ be an abelian N-free morphism, and assume that w avoids abelian
N-powers cyclically. If N > 2, then σ(w) avoids abelian N-powers
cyclically. If N = 2 and |w | ≥ 2, then σ(w) avoids abelian 2-powers
cyclically.

Proposition (Dekking (1979))
The morphism σ : 0 7→ 0001, 1 7→ 101 is abelian 4-free.

Since 0 avoids abelian 4-powers cyclically, the words σ(0), σ2(0), . . .
avoid abelian 4-powers cyclically.
This provides the words xi required for the proof of the main result.
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Thank You

Thank you for your attention!
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