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Preliminaries

Two words u and v are abelian equivalent if they are permutations of
each other. For example, 0011 and 1001 are abelian equivalent, aabc
and baab are not.

If A = {a1, . . . , ak} and w ∈ A∗, then ψ(w) = (|w |a1 , . . . , |w |ak ) (the
Parikh vector of w).
An abelian N-power is a word u0u1 · · · uN−1 if u0, u1, . . ., uN−1 are
abelian equivalent. For example, 010 · 100 · 010 · 001 is an abelian
4-power.

I The common length |u0| is called the period of the abelian N-power.
I The number N is the exponent.

A word w (finite or infinite) avoids abelian N-powers if it contains no
abelian N-power as a factor.
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Classic Questions/Results

Given an alphabet Σ of k letters, what is the least N such that there
exists an infinite word over Σ avoiding abelian N-powers?

I k = 2: 4 (Dekking 1979),
I k = 3: 3 (Dekking 1979),
I k = 4: 2 (Keränen 1992),
I . . . and many other results

Thus there exists a binary word of length n avoiding abelian 4-powers
for all n etc.

Jarkko Peltomäki Avoiding Abelian Powers Cyclically 3 / 25



Classic Questions/Results

Given an alphabet Σ of k letters, what is the least N such that there
exists an infinite word over Σ avoiding abelian N-powers?

I k = 2: 4 (Dekking 1979),
I k = 3: 3 (Dekking 1979),
I k = 4: 2 (Keränen 1992),
I . . . and many other results

Thus there exists a binary word of length n avoiding abelian 4-powers
for all n etc.

Jarkko Peltomäki Avoiding Abelian Powers Cyclically 3 / 25



Classic Questions/Results

Given an alphabet Σ of k letters, what is the least N such that there
exists an infinite word over Σ avoiding abelian N-powers?

I k = 2: 4 (Dekking 1979),
I k = 3: 3 (Dekking 1979),
I k = 4: 2 (Keränen 1992),
I . . . and many other results

Thus there exists a binary word of length n avoiding abelian 4-powers
for all n etc.

Jarkko Peltomäki Avoiding Abelian Powers Cyclically 3 / 25



Further Questions

We have finite words avoiding abelian N-powers (for some N) for all
lengths.

Can we make stronger assumptions?
Here we focus on stability under concatenation.
If we concatenate w with itself N times, the resulting word wN

contains at least the abelian power wN of period |w |. This is
unavoidable.
But does it have to contain abelian N-powers with smaller period?

I Maybe it does: 0010 avoids abelian 3-powers, but (0010)2 = 00100010
contains the abelian 3-power 03 of period 1.
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Main Concept

Definition
A word w avoids abelian N-powers cyclically if each abelian N-power in
the infinite word www · · · has period at least |w |.

Could give many positive examples, but they are tedious to verify.
If w is fixed, by increasing N it is easier to satisfy the definition.
But w does not avoid abelian N-powers cyclically for any N if wk is
conjugate to an abelian power with period less than |w |.

I 0110 avoids abelian 3-powers, but (0110)ω is an abelian ∞-power of
period 2.

I The converse holds (the bound is |w |).
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Remarks

Previously avoiding ordinary powers circularly has been considered.

Definition
A word w avoids N-powers circularly if all conjugates of w avoid N-powers.

Our generalization is thus twofold:
I power → abelian power,
I circular → cyclical

F In circular avoidance w2 is used in place of wω.
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Main Results

Definition
Let A(k) be the least integer N such that for all n there exists a word of
length n over a k-letter alphabet that avoids abelian N-powers cyclically.

Theorem (P.-Whiteland (2020))
We have 5 ≤ A(2) ≤ 8, 3 ≤ A(3) ≤ 4, 2 ≤ A(4) ≤ 3, A(k) = 2 for k ≥ 5.

Definition
Let A∞(k) be the least integer N such that there exist arbitrarily long
words over a k-letter alphabet that avoid abelian N-powers cyclically.

Theorem (P.-Whiteland (2020))
We have A∞(2) = 4, A∞(3) = 3, and A∞(4) = 2.
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Values A∞(k)

We will first sketch the proof showing A∞(2) = 4 and A∞(3) = 3.

Definition
A substitution σ : A∗ → A∗ preserves abelian N-powers if the following is
satisfied for all words w ∈ A∗: if σ(w) contains an abelian N-power
u0 · · · uN−1, then w contains an abelian N-power v0 · · · vN−1 such that
σ(v0 · · · vN−1) is a conjugate of u0 · · · uN−1.

More plainly: abelian N-powers decode to abelian N-powers up to a
cyclic shift.
This is stronger than the notion of an abelian N-free substitution (we
will return to this).
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Values A∞(k)

Lemma
Let σ : A∗ → A∗ be a substitution that preserves abelian N-powers and is
prolongable on the letter 0. Then the sequence (σn(0))n is a sequence of
words avoiding abelian N-powers cyclically.

Proof.
Let zn = σn(0) and zn = zω

n so that zn = σ(zn−1) for all n. Say there
exists a least n such that zn does not cyclically avoid abelian N-powers.
Since z0 = 0, we have n ≥ 1.

Thus zn contains an abelian N-power u0 · · · uN−1 with period m, m < |zn|.
Since σ preserves abelian N-powers, zn−1 contains an abelian N-power
v0 · · · vN−1 such that |σ(v0)| = m < |zn|.

By the minimality of n, |v0| ≥ |zn−1|. Hence v0 has a conjugate z ′ of zn−1
as a factor. Therefore m = |σ(v0)| ≥ |σ(z ′)| = |σ(zn−1)| = |zn|. E
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Values A∞(k)

It thus suffices to find suitable substitutions.

Dekking (1979) shows that σ1 : 0 7→ 011, 1 7→ 0001 and
σ2 : 0 7→ 0012, 1 7→ 112, 2 7→ 022 respectively preserve abelian
4-powers and 3-powers.
Hence A∞(2) = 4 and A∞(3) = 3.
There is no known substitution over a 4-letter alphabet that preserves
abelian 2-powers.
Thus we need something more.
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Values A∞(k)

Definition
A substitution σ : A∗ → A∗ is abelian N-free if σ(w) is abelian N-free for
all abelian N-free words w in A∗.

A substitution preserving abelian N-powers is abelian N-free, but the
converse is not true.
We can prove the following.

Proposition (P.-Whiteland (2020))
Let σ : A∗ → A∗ be an abelian N-free substitution, and assume that
w ∈ A∗ avoids abelian N-powers cyclically. If N > 2, then σ(w) avoids
abelian N-powers cyclically. If N = 2 and |w | ≥ 2, then σ(w) avoids
abelian 2-powers cyclically.
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Values A∞(k)

Now Keränen (1992) provides us a 85-uniform substitution σ3 (not
displayed) on a 4-letter alphabet that is abelian 2-free.

By iterating σ3 on 01, we see that A∞(4) = 2.
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Useful Lemma

Lemma

If wω contains an abelian N-power of period m with 1
2 |w | ≤ m < |w |, then it

contains an abelian N-power with period |w | −m.

Proof.
Assume WLOG that m > 1

2 |w | and wω begins with an abelian N-power
u0 · · · uN−1 of period m. By induction on N: if wω begins with an abelian
N-power of period m, then wN−1 ends with an abelian N-power sN−1 · · · s0 of
period |w | −m.
Case N = 2. As 1

2 |w | < m < |w |, we have |u0| < |w | < |u0u1|. We may write
w = u0s0 and u1 = s0p, where s0 is the length |w | −m suffix of w and p is a
prefix of w . Notice that |p| < m, so we have u0 = ps1 with |s1| = |s0|. We have

0 = ψ(u0)− ψ(u1) = ψ(ps1)− ψ(s0p) = ψ(s1)− ψ(s0).

Thus s1 is abelian equivalent to s0, and w ends with the abelian 2-power s1s0.
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contains an abelian N-power with period |w | −m.

Proof.
Assume WLOG that m > 1

2 |w | and wω begins with an abelian N-power
u0 · · · uN−1 of period m. By induction on N: if wω begins with an abelian
N-power of period m, then wN−1 ends with an abelian N-power sN−1 · · · s0 of
period |w | −m.
Case N = 2. As 1

2 |w | < m < |w |, we have |u0| < |w | < |u0u1|. We may write
w = u0s0 and u1 = s0p, where s0 is the length |w | −m suffix of w and p is a
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Useful Lemma

Proof (Continued).
Let N > 2. Proceed as before and find that w ends with the abelian
2-power s1s0 of period |w | −m. Conjugate wω to the right by |u0| to
obtain zω that begins with the abelian (N − 1)-power u1 · · · uN−1. By the
induction hypothesis, zN−2 ends with the abelian power sN−1 · · · s1 of
period |w | −m. To conclude, we notice that wN−1 = u0zN−2s0. The
claim follows.
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Values A(k)

Lemma

If w ∈ A∗ avoids abelian N-powers, then w#, # /∈ A, avoids abelian
N-powers cyclically.

Proof.
Set w = (w#)ω, and assume for a contradiction that an abelian N-power
u0 · · · uN−1 such that |u0| < |w#| occurs in w. By the previous lemma, we
may assume that |u0| ≤ 1

2 |w#|. Thus |u0u1| ≤ |w#| and # can occur in
u0u1 at most once. Thus # does not occur in u0, and so u0 · · · uN−1 must
be a factor of w . This contradicts the assumption that w avoids abelian
N-powers.
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Values A(k)

Theorem

We have 3 ≤ A(3) ≤ 4, 2 ≤ A(4) ≤ 3, and A(k) = 2 for k ≥ 5.

Proof.
Every ternary word of length 8 contains an abelian 2-power, so A(3) ≥ 3.
There exists a binary word w of length n that avoids abelian 4-powers for
all n (Dekking). By the previous lemma, the ternary word w# avoids
abelian 4-powers cyclically. Thus A(3) ≤ 4. In the other cases, use results
of Dekking and Keränen.
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Value of A(2)

The previous argument does not work in the binary case.
An explicit construction is needed.
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The Construction

Let σ : 0 7→ 0001, 1 7→ 101 (by Dekking, the fixed point is abelian
4-free).

Let w be a prefix of the fixed point σω(0) of length n.
Let w be the complement-reversal of w .
Set f = w � w with � ∈ {0, 1}.

Proposition
The word f avoids abelian 8-powers cyclically.

This handles odd lengths. For even lengths, remove � and
complement the final letter of w if |w | is even.
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Validity of the Construction

Let F = f ω.

Lemma
If F contains an abelian 8-power of period m, then m > 1

2 |w |.
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Validity of the Construction

Proof.
Say F contains abelian 8-power u0 · · · u7. Say m ≤ 1

2 |w |. Some ui must
“cross over” the end or middle of f ; otherwise w contains an abelian
4-power.

· · ·F :
ui

w w

Say 1 ≤ i ≤ 6, so that ui−1 and ui+1 exist. Since m ≤ 1
2 |w |, both ui−1

and ui+1 fit inside w and w .

· · ·F :
ui−1 ui ui+1

If m is large, then ui−1 and ui+1 cannot be abelian equivalent since the
frequency of 0’s in w is greater than that of 1’s. E If m is short, then
abelian 4-power fits into w or w (we need the help of computer here).
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Validity of the Construction

Lemma
If F contains an abelian 8-power u0 · · · u7 of period m and m > 1

2 |w |, then all ui ’s
“cross over”.

Proof.
Say some ui does not “cross over”. Then ui+1 does as m > 1

2 |w |.

· · ·F :
ui ui+1

Write ui+1 = αβ according to the “cross over” point.

· · ·F :
ui ui+1

α β

If |β| ≥ |α|, then β = αz . Thus ∆(ui ) = ∆(ui+1) = ∆(z) (∆(x) = |x |0 − |x |1).
Frequency: ∆(u0) > K where K can be taken large with computer verification
(recall m > 1

2 |w |). Thus ∆(z) > K , but ∆(z) is bounded above since z is a
factor of w . E Thus |β| < |α| and ui+2 is a factor of w . Then ui and ui+2 cannot
be abelian equivalent.
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Validity of the Construction

Lemma

The word F does not contain abelian 8-powers of period m such that m ≤ |w |.

Proof.
Say F contains an abelian 8-power u0 · · · u7 of period m such that m ≤ |w |. By
previous results, we may assume m > 1

2 |w |. Moreover, each ui “cross over”. Set
vi = u2iu2i+1. Thus F contains the abelian 4-power v0 · · · v3.

· · ·F :
u0 u1 u2 u3

v0 v1
Now M := |f | − |vi | = 2(|w | −m) + 1 > 0, so by a previous lemma, F contains
an abelian 4-power s4 · · · s0 of period M. In fact s4 · · · s0 ends where v0 · · · v3
begins (inspect the proof). The relative positions where vi start and end differ by
M. Since all ui ’s “cross over”, we see that s4 · · · s0 is a factor of w . E
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Validity of the Construction

We have thus excluded periods m ≤ |w |. As “long” periods imply
“short” periods by a previous lemma, we are done: A(2) ≤ 8.

Since there is no binary word of length 8 avoiding abelian 4-powers
cyclically, we have A(2) ≥ 5.
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Open Problems

Conjecture
A(2) = 5, A(3) = 3, A(4) = 2

Verified up to length 150.

Conjecture
If n 6= 8, then there exists a binary word of length n avoiding abelian
4-powers cyclically.
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Thank You

Thank you for your attention!

J. Peltomäki, M. A. Whiteland
Avoiding abelian powers cyclically
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