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Setup

We suppose that ∆ is an infinite word, a directive word, over a
d-letter alphabet and write ∆ = xa1

1 xa2
2 · · · with ak ≥ 1 and

xk 6= xk+1.

The sequence (ak) is the sequence of partial quotients
∆ is regular if x1x2 · · · is of the form (01 · · · (d − 1))ω.
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Regular Episturmian Words

Let ∆ = xa1
1 xa2

2 · · · be regular.

Set s1−d = x2, s2−d = x3, . . . , s−1 = xd , s0 = x1.
Define sk = sak

k−1s
ak−1
k−2 · · · s

a1
0 xk+1, 1 ≤ k < d .

Define sk = sak
k−1s

ak−1
k−2 · · · s

ak−(d−2)
k−(d−1)sk−d for k ≥ d .

When ∆ = (012)ω, then
I s0 = 0, s1 = 01, s2 = 0102, and sk = sk−1sk−2sk−3 for k ≥ 3.

The sequence (sk) is the sequence of (generalized) standard words
associated with ∆.
The limit c∆ of (sk) is called the regular standard episturmian word
with directive word ∆.
An infinite word is a regular episturmian word if it has the same
language as some regular standard episturmian word.
Combinatorial generalizations of Sturmian words.
Remark: if ∆ is not regular, then we need to use morphisms.
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Generalized Ostrowski Numeration Systems

Set qk = |sk | and view (qk) as a numeration system, that is, greedily
express each positive integer as a sum according to the sequence (qk).

When ∆ = (012)ω, then (qk) = (1, 2, 4, 7, 13, 21, . . .) (the Tribonacci
numbers) and 10 = 7 + 3 = 7 + 2 + 1, so rep(10) = 1101 (we write
least significant digit first).
This is the (generalized) Ostrowski numeration system associated
with ∆.
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Intercept of an Episturmian Word

Theorem (Droubay-Justin-Pirillo (2001))
Let t be a regular episturmian word with directive word ∆. Then there
exists a unique word c1c2 · · · such that for all k, the word c1 · · · ck is the
Ostrowski expansion of an integer `k and

t = lim
k→∞

T `k (c∆)

= lim
k→∞

T val(c1···ck )(c∆).

The word c1c2 · · · is called the intercept of t.
In the Sturmian case, this coincides with the usual notion of intercept
via Ostrowski expansions of real numbers.
Important point: it is in principle possible to reduce the study of a
property of episturmian words to studying the property on standard
episturmian words.
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Initial Nonrepetitive Complexity

Definition
Let x be an infinite word. Its initial nonrepetitive complexity function
inrc(x, n) is defined as

inrc(x, n) = max{m : x[i , i + n − 1] 6= x[j , j + n − 1]
for all i , j with 1 ≤ i < j ≤ m}.

I.e.: inrc(x, n) is the maximum number of factors of length n seen
when x is read from left to right prior to the first repeated factor of
length n.

Introduced by Moothatu (2012), studied further by Nicholson and
Rampersad (2016) and Medková et al. (2020).
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Initial Nonrepetitive Complexity

Wojcik (2020) finds a formula for inrc(t, n) for an arbitrary Sturmian
word t based on its intercept.
I generalize this to all regular episturmian words, but this formula is
too complicated to display here.
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Motivation

Why find complicated formulas for the initial nonrepetitive
complexity?
Answer: they can be used to determine Diophantine exponents.
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Diophantine Exponents

Definition
Let x be an infinite word. We let its Diophantine exponent, denoted by
dio(x), to be the supremum of all real numbers ρ for which there exist
arbitrarily long prefixes of x of the form UV e , where U and V are finite
words and e is a real number, such that

|UV e |
|UV | ≥ ρ.
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Diophantine Exponents

Proposition (Bugeaud-Kim (2019))
If x is an infinite word, then

dio(x) = 1 + lim sup
n→∞

n
inrc(x, n) .

Thus we may in principle compute the Diophantine exponent of a
given regular episturmian word.
In practice, this is doable only when the intercept and ∆ are “nice”.
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Results

Theorem (P. (2021))
Let t be a regular episturmian word. Then dio(t) <∞ if and only if the
sequence (ak) of partial quotients in bounded.

Proved for Sturmian words by Adamczewski and Bugeaud (2011).
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Results

Theorem (P. (2021))
Let t be a regular episturmian word of period d. If d = 2 or
lim supk ak ≥ 3, then dio(t) > 2.

For Sturmian words follows from Adamczewski (2010) and Berthé et
al. (2006).
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Results

Proposition (P. (2021))
Let t be the episturmian word with directive word (001122)ω having intercept 1ω.
Then

dio(t) = 1 + 1
2 (β − 1) ≈ 1.9156

where β ≈ 2.8312 is the real root of the polynomial x3 − 2x2 − 2x − 1.

Proposition (P. (2021))
Let t be the episturmian word with directive word (0123)ω having intercept
(001)ω, (010)ω, or (100)ω. Then

dio(t) = 1 + 1
27 (−7ζ3 + 15ζ2 + 13ζ − 4) ≈ 1.9873

where ζ ≈ 1.9276 is the positive real root of the polynomial x4 − x3 − x2 − x − 1.
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Irrationality Exponents

If x is an infinite word over the alphabet {0, 1, . . . , b − 1}, b ≥ 2, let
ξx be the real number with x as a fractional part.

Problem
What can we infer about the arithmetic properties of ξx given
combinatorial properties of x?

Here we consider the irrationality exponent of ξx.
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Irrationality Exponents

Definition
The irrationality exponent µ(ξ) of a real number ξ is the supremum of the
real numbers ρ such that the inequality∣∣∣∣ξ − p

q

∣∣∣∣ < 1
qρ

has infinitely many rational solutions p/q. If µ(ξ) =∞, then we say that
ξ is a Liouville number.

µ(ξ) = 2 for almost all ξ
µ(ξ) < 2 if and only if ξ is rational
µ(ξ) = 2 if ξ is an algebraic irrational (Roth’s Theorem)
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Link to Diophantine Exponents

Proposition (Adamczewski (2010))
µ(ξx) ≥ dio(x)

Proof Sketch.
The definition of dio provides arbitrarily long prefixes of x of the form UV e

with |UV e |/|UV | arbitrarily close to dio(x). Select the rational p/q to
have fractional part UV ω and work out the details.
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Corollaries

Theorem

Let t be a regular episturmian word with directive word ∆. Then ξt is a
Liouville number if and only if the sequence (ak) of partial quotients is
bounded.

Proved for Sturmian words by Komatsu (1996).

Theorem

Let t be a regular episturmian word of period d. If d = 2 or
lim supk ak ≥ 3, then µ(ξt) > 2.

ξt is transcendental (follows from Bugeaud-Adamczewski (2007)).
ξt is an atypical number (belongs to a set of measure 0).
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Thank You

Thank you for your attention!

J. Peltomäki.
Initial nonrepetitive complexity of regular episturmian words and their Diophantine
exponents
Preprint (2021), arXiv:2103.08351
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