
Falsification of Multiple Requirements for
Cyber-Physical Systems Using Online Generative
Adversarial Networks and Multi-Armed Bandits

Jarkko Peltomäki

Information Technology
Åbo Akademi University

4.4.2020

Joint work with I. Porres

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 1 / 13

Context

A cyber-physical system (CPS) is a system which consists of both
software and hardware components.

I Example: self-driving car.
As CPSs interact with the real world, it is important to specify safety
requirements and verify these requirements before the system is taken
into production.
Our work concerns black-box verification of CPSs. This means that
we get to choose the inputs and to observe the behavior of a CPS
without access to source code or other internals.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 2 / 13

Context

A cyber-physical system (CPS) is a system which consists of both
software and hardware components.

I Example: self-driving car.

As CPSs interact with the real world, it is important to specify safety
requirements and verify these requirements before the system is taken
into production.
Our work concerns black-box verification of CPSs. This means that
we get to choose the inputs and to observe the behavior of a CPS
without access to source code or other internals.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 2 / 13

Context

A cyber-physical system (CPS) is a system which consists of both
software and hardware components.

I Example: self-driving car.
As CPSs interact with the real world, it is important to specify safety
requirements and verify these requirements before the system is taken
into production.

Our work concerns black-box verification of CPSs. This means that
we get to choose the inputs and to observe the behavior of a CPS
without access to source code or other internals.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 2 / 13

Context

A cyber-physical system (CPS) is a system which consists of both
software and hardware components.

I Example: self-driving car.
As CPSs interact with the real world, it is important to specify safety
requirements and verify these requirements before the system is taken
into production.
Our work concerns black-box verification of CPSs. This means that
we get to choose the inputs and to observe the behavior of a CPS
without access to source code or other internals.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 2 / 13

Setup

We assume that the CPS is presented by a simulator which is a
mapping from inputs x to output signalsM(x) (possibly
vector-valued).

We assume that the requirements are specified in signal temporal
logic STL.

I E.g., �[0,30]SPEED < 35
An STL formula ϕ can be transformed into a real-valued robustness
function ρϕ such that ϕ is true if and only if ρϕ(M(x)) > 0 for all x .
This allows to express falsification of ϕ as an optimization problem
minimizing the robustness. Let

x∗ = arg min
x

ρϕ(M(x)).

Then ϕ is falsified if and only if ρϕ(x∗) ≤ 0.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 3 / 13

Setup

We assume that the CPS is presented by a simulator which is a
mapping from inputs x to output signalsM(x) (possibly
vector-valued).
We assume that the requirements are specified in signal temporal
logic STL.

I E.g., �[0,30]SPEED < 35
An STL formula ϕ can be transformed into a real-valued robustness
function ρϕ such that ϕ is true if and only if ρϕ(M(x)) > 0 for all x .
This allows to express falsification of ϕ as an optimization problem
minimizing the robustness. Let

x∗ = arg min
x

ρϕ(M(x)).

Then ϕ is falsified if and only if ρϕ(x∗) ≤ 0.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 3 / 13

Setup

We assume that the CPS is presented by a simulator which is a
mapping from inputs x to output signalsM(x) (possibly
vector-valued).
We assume that the requirements are specified in signal temporal
logic STL.

I E.g., �[0,30]SPEED < 35

An STL formula ϕ can be transformed into a real-valued robustness
function ρϕ such that ϕ is true if and only if ρϕ(M(x)) > 0 for all x .
This allows to express falsification of ϕ as an optimization problem
minimizing the robustness. Let

x∗ = arg min
x

ρϕ(M(x)).

Then ϕ is falsified if and only if ρϕ(x∗) ≤ 0.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 3 / 13

Setup

We assume that the CPS is presented by a simulator which is a
mapping from inputs x to output signalsM(x) (possibly
vector-valued).
We assume that the requirements are specified in signal temporal
logic STL.

I E.g., �[0,30]SPEED < 35
An STL formula ϕ can be transformed into a real-valued robustness
function ρϕ such that ϕ is true if and only if ρϕ(M(x)) > 0 for all x .

This allows to express falsification of ϕ as an optimization problem
minimizing the robustness. Let

x∗ = arg min
x

ρϕ(M(x)).

Then ϕ is falsified if and only if ρϕ(x∗) ≤ 0.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 3 / 13

Setup

We assume that the CPS is presented by a simulator which is a
mapping from inputs x to output signalsM(x) (possibly
vector-valued).
We assume that the requirements are specified in signal temporal
logic STL.

I E.g., �[0,30]SPEED < 35
An STL formula ϕ can be transformed into a real-valued robustness
function ρϕ such that ϕ is true if and only if ρϕ(M(x)) > 0 for all x .
This allows to express falsification of ϕ as an optimization problem
minimizing the robustness. Let

x∗ = arg min
x

ρϕ(M(x)).

Then ϕ is falsified if and only if ρϕ(x∗) ≤ 0.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 3 / 13

Algorithms

The optimization problem can be solved in principle by any
optimization algorithm.

However, for CPSs evaluatingM(x) can be costly, so optimization
methods minimizing the number of evaluations are preferred. Some
recent examples:

I Online generative adversarial network test generation algorithm (Porres
et al. 2021).

I Bayesian optimization based algorithm (Mathesen et al. 2021).

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 4 / 13

Algorithms

The optimization problem can be solved in principle by any
optimization algorithm.
However, for CPSs evaluatingM(x) can be costly, so optimization
methods minimizing the number of evaluations are preferred. Some
recent examples:

I Online generative adversarial network test generation algorithm (Porres
et al. 2021).

I Bayesian optimization based algorithm (Mathesen et al. 2021).

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 4 / 13

Multiple Requirements

Say we have multiple requirements ϕ1, . . ., ϕn.

How should we approach the falsification?
We assume that for a formula ϕ we have a test generator algorithm
Gϕ which proposes candidate tests x for minimization.
Idea 1: Form the conjunctive requirement ϕ := ϕ1 ∧ · · · ∧ ϕn and use
your favorite generator algorithm Gϕ for this single requirement.

I Pros: simple to implement, single formula (it is more complicated
though).

I Cons: does not take different behaviors of formulas into account (say
ϕ1 unfalsifiable, ϕ100 easily falsifiable).

Idea 2: Use a generator for each formula ϕi (total n generators).
I Pros: simple to implement, uses information from all ϕi .
I Cons: Uses n times more resources.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 5 / 13

Multiple Requirements

Say we have multiple requirements ϕ1, . . ., ϕn.
How should we approach the falsification?

We assume that for a formula ϕ we have a test generator algorithm
Gϕ which proposes candidate tests x for minimization.
Idea 1: Form the conjunctive requirement ϕ := ϕ1 ∧ · · · ∧ ϕn and use
your favorite generator algorithm Gϕ for this single requirement.

I Pros: simple to implement, single formula (it is more complicated
though).

I Cons: does not take different behaviors of formulas into account (say
ϕ1 unfalsifiable, ϕ100 easily falsifiable).

Idea 2: Use a generator for each formula ϕi (total n generators).
I Pros: simple to implement, uses information from all ϕi .
I Cons: Uses n times more resources.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 5 / 13

Multiple Requirements

Say we have multiple requirements ϕ1, . . ., ϕn.
How should we approach the falsification?
We assume that for a formula ϕ we have a test generator algorithm
Gϕ which proposes candidate tests x for minimization.

Idea 1: Form the conjunctive requirement ϕ := ϕ1 ∧ · · · ∧ ϕn and use
your favorite generator algorithm Gϕ for this single requirement.

I Pros: simple to implement, single formula (it is more complicated
though).

I Cons: does not take different behaviors of formulas into account (say
ϕ1 unfalsifiable, ϕ100 easily falsifiable).

Idea 2: Use a generator for each formula ϕi (total n generators).
I Pros: simple to implement, uses information from all ϕi .
I Cons: Uses n times more resources.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 5 / 13

Multiple Requirements

Say we have multiple requirements ϕ1, . . ., ϕn.
How should we approach the falsification?
We assume that for a formula ϕ we have a test generator algorithm
Gϕ which proposes candidate tests x for minimization.
Idea 1: Form the conjunctive requirement ϕ := ϕ1 ∧ · · · ∧ ϕn and use
your favorite generator algorithm Gϕ for this single requirement.

I Pros: simple to implement, single formula (it is more complicated
though).

I Cons: does not take different behaviors of formulas into account (say
ϕ1 unfalsifiable, ϕ100 easily falsifiable).

Idea 2: Use a generator for each formula ϕi (total n generators).
I Pros: simple to implement, uses information from all ϕi .
I Cons: Uses n times more resources.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 5 / 13

Multiple Requirements

Say we have multiple requirements ϕ1, . . ., ϕn.
How should we approach the falsification?
We assume that for a formula ϕ we have a test generator algorithm
Gϕ which proposes candidate tests x for minimization.
Idea 1: Form the conjunctive requirement ϕ := ϕ1 ∧ · · · ∧ ϕn and use
your favorite generator algorithm Gϕ for this single requirement.

I Pros: simple to implement, single formula (it is more complicated
though).

I Cons: does not take different behaviors of formulas into account (say
ϕ1 unfalsifiable, ϕ100 easily falsifiable).

Idea 2: Use a generator for each formula ϕi (total n generators).
I Pros: simple to implement, uses information from all ϕi .
I Cons: Uses n times more resources.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 5 / 13

Multiple Requirements

Say we have multiple requirements ϕ1, . . ., ϕn.
How should we approach the falsification?
We assume that for a formula ϕ we have a test generator algorithm
Gϕ which proposes candidate tests x for minimization.
Idea 1: Form the conjunctive requirement ϕ := ϕ1 ∧ · · · ∧ ϕn and use
your favorite generator algorithm Gϕ for this single requirement.

I Pros: simple to implement, single formula (it is more complicated
though).

I Cons: does not take different behaviors of formulas into account (say
ϕ1 unfalsifiable, ϕ100 easily falsifiable).

Idea 2: Use a generator for each formula ϕi (total n generators).
I Pros: simple to implement, uses information from all ϕi .
I Cons: Uses n times more resources.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 5 / 13

Multiple Requirements

Say we have multiple requirements ϕ1, . . ., ϕn.
How should we approach the falsification?
We assume that for a formula ϕ we have a test generator algorithm
Gϕ which proposes candidate tests x for minimization.
Idea 1: Form the conjunctive requirement ϕ := ϕ1 ∧ · · · ∧ ϕn and use
your favorite generator algorithm Gϕ for this single requirement.

I Pros: simple to implement, single formula (it is more complicated
though).

I Cons: does not take different behaviors of formulas into account (say
ϕ1 unfalsifiable, ϕ100 easily falsifiable).

Idea 2: Use a generator for each formula ϕi (total n generators).

I Pros: simple to implement, uses information from all ϕi .
I Cons: Uses n times more resources.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 5 / 13

Multiple Requirements

Say we have multiple requirements ϕ1, . . ., ϕn.
How should we approach the falsification?
We assume that for a formula ϕ we have a test generator algorithm
Gϕ which proposes candidate tests x for minimization.
Idea 1: Form the conjunctive requirement ϕ := ϕ1 ∧ · · · ∧ ϕn and use
your favorite generator algorithm Gϕ for this single requirement.

I Pros: simple to implement, single formula (it is more complicated
though).

I Cons: does not take different behaviors of formulas into account (say
ϕ1 unfalsifiable, ϕ100 easily falsifiable).

Idea 2: Use a generator for each formula ϕi (total n generators).
I Pros: simple to implement, uses information from all ϕi .

I Cons: Uses n times more resources.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 5 / 13

Multiple Requirements

Say we have multiple requirements ϕ1, . . ., ϕn.
How should we approach the falsification?
We assume that for a formula ϕ we have a test generator algorithm
Gϕ which proposes candidate tests x for minimization.
Idea 1: Form the conjunctive requirement ϕ := ϕ1 ∧ · · · ∧ ϕn and use
your favorite generator algorithm Gϕ for this single requirement.

I Pros: simple to implement, single formula (it is more complicated
though).

I Cons: does not take different behaviors of formulas into account (say
ϕ1 unfalsifiable, ϕ100 easily falsifiable).

Idea 2: Use a generator for each formula ϕi (total n generators).
I Pros: simple to implement, uses information from all ϕi .
I Cons: Uses n times more resources.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 5 / 13

Main Research Question

We would like to use Idea 2 (take into account information from all
ϕi) but use less resources (ideally as little as in Idea 1).

Solution: pick the formula which is easiest to falsify and use a
generator only for it.
Problem: how do we know which formula is easiest?
We cannot know this, but we can attempt learn this online.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 6 / 13

Main Research Question

We would like to use Idea 2 (take into account information from all
ϕi) but use less resources (ideally as little as in Idea 1).
Solution: pick the formula which is easiest to falsify and use a
generator only for it.

Problem: how do we know which formula is easiest?
We cannot know this, but we can attempt learn this online.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 6 / 13

Main Research Question

We would like to use Idea 2 (take into account information from all
ϕi) but use less resources (ideally as little as in Idea 1).
Solution: pick the formula which is easiest to falsify and use a
generator only for it.
Problem: how do we know which formula is easiest?

We cannot know this, but we can attempt learn this online.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 6 / 13

Main Research Question

We would like to use Idea 2 (take into account information from all
ϕi) but use less resources (ideally as little as in Idea 1).
Solution: pick the formula which is easiest to falsify and use a
generator only for it.
Problem: how do we know which formula is easiest?
We cannot know this, but we can attempt learn this online.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 6 / 13

Solution: Multi-armed Bandit Algorithms

In the multi-armed bandit problem, we have n slot machines (arms)
with each having their random reward rn (with unknown distribution).
On each round, one of the arms is selected and reward rn is obtained.
What is the best strategy to maximize the total reward?

This is a well-studied problem, and the literature provides dozens of
good algorithms.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 7 / 13

Solution: Multi-armed Bandit Algorithms

In the multi-armed bandit problem, we have n slot machines (arms)
with each having their random reward rn (with unknown distribution).
On each round, one of the arms is selected and reward rn is obtained.
What is the best strategy to maximize the total reward?
This is a well-studied problem, and the literature provides dozens of
good algorithms.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 7 / 13

MAB and Multiple Requirements

In our approach we use Idea 2 and the n generators (one for each ϕi)
are the arms of the MAB problem.

On each round, a generator i is selected, a test input x is generated,
and the robustness ρϕi (M(x)) is computed (reward).
Thus, on each round, only one generator is considered and the cost
per round is equal to running one generator.
The MAB algorithm (selection of the arm) is as follows:

I For a warm-up period of M rounds, select all n arms.
I On each round, record which generator achieved the lowest robustness.

This yields an empirical success frequency for each arm.
I After the warm-up period, select randomly an arm with probabilities

according to the success frequencies, use the corresponding generator,
update frequencies, repeat.

Intuitively this algorithm most often considers the requirement which
is easiest to falsify (has lowest robustness values fastest). Due to
random chance, other requirements are occasionally considered as
well (so there is a chance of correcting a wrong preference).

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 8 / 13

MAB and Multiple Requirements

In our approach we use Idea 2 and the n generators (one for each ϕi)
are the arms of the MAB problem.
On each round, a generator i is selected, a test input x is generated,
and the robustness ρϕi (M(x)) is computed (reward).

Thus, on each round, only one generator is considered and the cost
per round is equal to running one generator.
The MAB algorithm (selection of the arm) is as follows:

I For a warm-up period of M rounds, select all n arms.
I On each round, record which generator achieved the lowest robustness.

This yields an empirical success frequency for each arm.
I After the warm-up period, select randomly an arm with probabilities

according to the success frequencies, use the corresponding generator,
update frequencies, repeat.

Intuitively this algorithm most often considers the requirement which
is easiest to falsify (has lowest robustness values fastest). Due to
random chance, other requirements are occasionally considered as
well (so there is a chance of correcting a wrong preference).

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 8 / 13

MAB and Multiple Requirements

In our approach we use Idea 2 and the n generators (one for each ϕi)
are the arms of the MAB problem.
On each round, a generator i is selected, a test input x is generated,
and the robustness ρϕi (M(x)) is computed (reward).
Thus, on each round, only one generator is considered and the cost
per round is equal to running one generator.

The MAB algorithm (selection of the arm) is as follows:
I For a warm-up period of M rounds, select all n arms.
I On each round, record which generator achieved the lowest robustness.

This yields an empirical success frequency for each arm.
I After the warm-up period, select randomly an arm with probabilities

according to the success frequencies, use the corresponding generator,
update frequencies, repeat.

Intuitively this algorithm most often considers the requirement which
is easiest to falsify (has lowest robustness values fastest). Due to
random chance, other requirements are occasionally considered as
well (so there is a chance of correcting a wrong preference).

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 8 / 13

MAB and Multiple Requirements

In our approach we use Idea 2 and the n generators (one for each ϕi)
are the arms of the MAB problem.
On each round, a generator i is selected, a test input x is generated,
and the robustness ρϕi (M(x)) is computed (reward).
Thus, on each round, only one generator is considered and the cost
per round is equal to running one generator.
The MAB algorithm (selection of the arm) is as follows:

I For a warm-up period of M rounds, select all n arms.

I On each round, record which generator achieved the lowest robustness.
This yields an empirical success frequency for each arm.

I After the warm-up period, select randomly an arm with probabilities
according to the success frequencies, use the corresponding generator,
update frequencies, repeat.

Intuitively this algorithm most often considers the requirement which
is easiest to falsify (has lowest robustness values fastest). Due to
random chance, other requirements are occasionally considered as
well (so there is a chance of correcting a wrong preference).

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 8 / 13

MAB and Multiple Requirements

In our approach we use Idea 2 and the n generators (one for each ϕi)
are the arms of the MAB problem.
On each round, a generator i is selected, a test input x is generated,
and the robustness ρϕi (M(x)) is computed (reward).
Thus, on each round, only one generator is considered and the cost
per round is equal to running one generator.
The MAB algorithm (selection of the arm) is as follows:

I For a warm-up period of M rounds, select all n arms.
I On each round, record which generator achieved the lowest robustness.

This yields an empirical success frequency for each arm.

I After the warm-up period, select randomly an arm with probabilities
according to the success frequencies, use the corresponding generator,
update frequencies, repeat.

Intuitively this algorithm most often considers the requirement which
is easiest to falsify (has lowest robustness values fastest). Due to
random chance, other requirements are occasionally considered as
well (so there is a chance of correcting a wrong preference).

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 8 / 13

MAB and Multiple Requirements

In our approach we use Idea 2 and the n generators (one for each ϕi)
are the arms of the MAB problem.
On each round, a generator i is selected, a test input x is generated,
and the robustness ρϕi (M(x)) is computed (reward).
Thus, on each round, only one generator is considered and the cost
per round is equal to running one generator.
The MAB algorithm (selection of the arm) is as follows:

I For a warm-up period of M rounds, select all n arms.
I On each round, record which generator achieved the lowest robustness.

This yields an empirical success frequency for each arm.
I After the warm-up period, select randomly an arm with probabilities

according to the success frequencies, use the corresponding generator,
update frequencies, repeat.

Intuitively this algorithm most often considers the requirement which
is easiest to falsify (has lowest robustness values fastest). Due to
random chance, other requirements are occasionally considered as
well (so there is a chance of correcting a wrong preference).

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 8 / 13

MAB and Multiple Requirements

In our approach we use Idea 2 and the n generators (one for each ϕi)
are the arms of the MAB problem.
On each round, a generator i is selected, a test input x is generated,
and the robustness ρϕi (M(x)) is computed (reward).
Thus, on each round, only one generator is considered and the cost
per round is equal to running one generator.
The MAB algorithm (selection of the arm) is as follows:

I For a warm-up period of M rounds, select all n arms.
I On each round, record which generator achieved the lowest robustness.

This yields an empirical success frequency for each arm.
I After the warm-up period, select randomly an arm with probabilities

according to the success frequencies, use the corresponding generator,
update frequencies, repeat.

Intuitively this algorithm most often considers the requirement which
is easiest to falsify (has lowest robustness values fastest). Due to
random chance, other requirements are occasionally considered as
well (so there is a chance of correcting a wrong preference).

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 8 / 13

Experimental Results

Consider the function (Mathesen et al.)
mo3d : R3 → R3,mo3d(x) = (h1(x), h2(x), h3(x)) where

h1(x1, x2, x3) = 305 − 100
3∑

i=1

sin
(xi
3

)
,

h2(x1, x2, x3) = 230 − 75
3∑

i=1

cos
(xi
2.5

+ 15
)

, and

h3(x1, x2, x3) =
3∑

i=1

(xi − 7)2 −
3∑

i=1

cos
(xi − 7

2.75

)
.

Requirements ϕ1 = �h1 > 0, ϕ2 = �h2 > 0, ϕ3 = �h3 > 0.
ϕ3 falsifiable, ϕ1, ϕ2 unfalsifiable.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 9 / 13

Experimental Results

Consider the function (Mathesen et al.)
mo3d : R3 → R3,mo3d(x) = (h1(x), h2(x), h3(x)) where

h1(x1, x2, x3) = 305 − 100
3∑

i=1

sin
(xi
3

)
,

h2(x1, x2, x3) = 230 − 75
3∑

i=1

cos
(xi
2.5

+ 15
)

, and

h3(x1, x2, x3) =
3∑

i=1

(xi − 7)2 −
3∑

i=1

cos
(xi − 7

2.75

)
.

Requirements ϕ1 = �h1 > 0, ϕ2 = �h2 > 0, ϕ3 = �h3 > 0.

ϕ3 falsifiable, ϕ1, ϕ2 unfalsifiable.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 9 / 13

Experimental Results

Consider the function (Mathesen et al.)
mo3d : R3 → R3,mo3d(x) = (h1(x), h2(x), h3(x)) where

h1(x1, x2, x3) = 305 − 100
3∑

i=1

sin
(xi
3

)
,

h2(x1, x2, x3) = 230 − 75
3∑

i=1

cos
(xi
2.5

+ 15
)

, and

h3(x1, x2, x3) =
3∑

i=1

(xi − 7)2 −
3∑

i=1

cos
(xi − 7

2.75

)
.

Requirements ϕ1 = �h1 > 0, ϕ2 = �h2 > 0, ϕ3 = �h3 > 0.
ϕ3 falsifiable, ϕ1, ϕ2 unfalsifiable.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 9 / 13

Experimental Results

We compared falsification of ϕ1 ∧ ϕ2 ∧ ϕ3 (A1) versus falsification of
ϕ1, ϕ2, ϕ3 using the MAB approach (A3).
We used online generative adversarial network algorithm (Porres et
al.) for the generator.
We allowed 80 executions on the system with warm-up period 30.
We repeated the falsification task 50 times.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 10 / 13

Experimental Results

A1 Single conjunctive requirement A3 MAB selection

2.5

0.0

2.5

5.0

7.5

10.0

12.5

M
in

 m
o3

d
co

m
po

ne
nt

 a
fte

r 8
0

ex
ec

ut
io

ns

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 11 / 13

Future Work

More experiments.
Compare to other algorithms.
Consider other MAB algorithms.

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 12 / 13

Thank You

Thank you for your attention!

Jarkko Peltomäki Falsification of Multiple Requirements for CPSs... 13 / 13

