
Wasserstein Generative Adversarial Networks for Online
Test Generation for Cyber Physical Systems

Jarkko Peltomäki

Information Technology
Åbo Akademi University

9.5.2022

Joint work with F. Spencer and I. Porres

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 1 / 12

Context

Aim: online test suite generation using generative adversarial
networks (GANs).

We assume that we have a system under test (SUT) S which is a
deterministic (black-box) mapping I → Rm where I ⊆ Rn.
We assume that our requirements for the SUT are given as a fitness
function f : I → [0, 1] such that an test t ∈ I falsifies the
requirements if and only if f (t) = 1 (high-fitness ↔ challenging test).
We assume that executions are expensive, so we want to avoid calls
S(t).

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 2 / 12

Context

Aim: online test suite generation using generative adversarial
networks (GANs).
We assume that we have a system under test (SUT) S which is a
deterministic (black-box) mapping I → Rm where I ⊆ Rn.

We assume that our requirements for the SUT are given as a fitness
function f : I → [0, 1] such that an test t ∈ I falsifies the
requirements if and only if f (t) = 1 (high-fitness ↔ challenging test).
We assume that executions are expensive, so we want to avoid calls
S(t).

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 2 / 12

Context

Aim: online test suite generation using generative adversarial
networks (GANs).
We assume that we have a system under test (SUT) S which is a
deterministic (black-box) mapping I → Rm where I ⊆ Rn.
We assume that our requirements for the SUT are given as a fitness
function f : I → [0, 1] such that an test t ∈ I falsifies the
requirements if and only if f (t) = 1 (high-fitness ↔ challenging test).

We assume that executions are expensive, so we want to avoid calls
S(t).

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 2 / 12

Context

Aim: online test suite generation using generative adversarial
networks (GANs).
We assume that we have a system under test (SUT) S which is a
deterministic (black-box) mapping I → Rm where I ⊆ Rn.
We assume that our requirements for the SUT are given as a fitness
function f : I → [0, 1] such that an test t ∈ I falsifies the
requirements if and only if f (t) = 1 (high-fitness ↔ challenging test).
We assume that executions are expensive, so we want to avoid calls
S(t).

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 2 / 12

Generative Adversarial Networks

Let P be a probability distribution on the input space I.

A generator G is a mapping G : I ′ ⊆ Rd → I such that G transforms
the, say, uniform distribution on I ′ to P on I. That is, sampling
uniformly on I ′ produces samples on I according to P via the map G .
A Wasserstein generative adversarial network (WGAN) is a way to
find such a G based on a large data sample from P.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 3 / 12

Generative Adversarial Networks

Let P be a probability distribution on the input space I.
A generator G is a mapping G : I ′ ⊆ Rd → I such that G transforms
the, say, uniform distribution on I ′ to P on I.

That is, sampling
uniformly on I ′ produces samples on I according to P via the map G .
A Wasserstein generative adversarial network (WGAN) is a way to
find such a G based on a large data sample from P.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 3 / 12

Generative Adversarial Networks

Let P be a probability distribution on the input space I.
A generator G is a mapping G : I ′ ⊆ Rd → I such that G transforms
the, say, uniform distribution on I ′ to P on I. That is, sampling
uniformly on I ′ produces samples on I according to P via the map G .

A Wasserstein generative adversarial network (WGAN) is a way to
find such a G based on a large data sample from P.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 3 / 12

Generative Adversarial Networks

Let P be a probability distribution on the input space I.
A generator G is a mapping G : I ′ ⊆ Rd → I such that G transforms
the, say, uniform distribution on I ′ to P on I. That is, sampling
uniformly on I ′ produces samples on I according to P via the map G .
A Wasserstein generative adversarial network (WGAN) is a way to
find such a G based on a large data sample from P.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 3 / 12

WGANs and Testing

For validation, it would be desirable to have a WGAN trained on the
uniform distribution on

{t ∈ I : f (t) > 1− ε}

for a small ε (this is the set of challenging tests).
Sampling from such a WGAN yields a good test suite.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 4 / 12

Problem

Problem: We do not assume to have a large data sample for training
a WGAN, so how do we train a WGAN?
Solution: online training of a WGAN (our proposal).

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 5 / 12

Broad Ideas

Obtain a random sample T of tests.

Train a WGAN G on tests of T with “high-fitness”.
Use G to sample a “good” new test t.
Add t to T and retrain.
Repeat until |T | is large enough (budget exhausted).

Two issues:
What does “high-fitness” mean?
How to determine that a candidate test is “good”, that is, how to
ensure that adding it to T drives G to learn how to sample
high-fitness tests?

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 6 / 12

Broad Ideas

Obtain a random sample T of tests.
Train a WGAN G on tests of T with “high-fitness”.

Use G to sample a “good” new test t.
Add t to T and retrain.
Repeat until |T | is large enough (budget exhausted).

Two issues:
What does “high-fitness” mean?
How to determine that a candidate test is “good”, that is, how to
ensure that adding it to T drives G to learn how to sample
high-fitness tests?

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 6 / 12

Broad Ideas

Obtain a random sample T of tests.
Train a WGAN G on tests of T with “high-fitness”.
Use G to sample a “good” new test t.

Add t to T and retrain.
Repeat until |T | is large enough (budget exhausted).

Two issues:
What does “high-fitness” mean?
How to determine that a candidate test is “good”, that is, how to
ensure that adding it to T drives G to learn how to sample
high-fitness tests?

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 6 / 12

Broad Ideas

Obtain a random sample T of tests.
Train a WGAN G on tests of T with “high-fitness”.
Use G to sample a “good” new test t.
Add t to T and retrain.

Repeat until |T | is large enough (budget exhausted).
Two issues:

What does “high-fitness” mean?
How to determine that a candidate test is “good”, that is, how to
ensure that adding it to T drives G to learn how to sample
high-fitness tests?

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 6 / 12

Broad Ideas

Obtain a random sample T of tests.
Train a WGAN G on tests of T with “high-fitness”.
Use G to sample a “good” new test t.
Add t to T and retrain.
Repeat until |T | is large enough (budget exhausted).

Two issues:
What does “high-fitness” mean?
How to determine that a candidate test is “good”, that is, how to
ensure that adding it to T drives G to learn how to sample
high-fitness tests?

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 6 / 12

Broad Ideas

Obtain a random sample T of tests.
Train a WGAN G on tests of T with “high-fitness”.
Use G to sample a “good” new test t.
Add t to T and retrain.
Repeat until |T | is large enough (budget exhausted).

Two issues:
What does “high-fitness” mean?

How to determine that a candidate test is “good”, that is, how to
ensure that adding it to T drives G to learn how to sample
high-fitness tests?

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 6 / 12

Broad Ideas

Obtain a random sample T of tests.
Train a WGAN G on tests of T with “high-fitness”.
Use G to sample a “good” new test t.
Add t to T and retrain.
Repeat until |T | is large enough (budget exhausted).

Two issues:
What does “high-fitness” mean?
How to determine that a candidate test is “good”, that is, how to
ensure that adding it to T drives G to learn how to sample
high-fitness tests?

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 6 / 12

Solution to Second Issue

Solution: train an analyzer A (a neural network) for the mapping
t 7→ f (t) using T .

The analyzer can estimate the fitness of a test without executing it
on the SUT.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 7 / 12

Solution to Second Issue

Solution: train an analyzer A (a neural network) for the mapping
t 7→ f (t) using T .
The analyzer can estimate the fitness of a test without executing it
on the SUT.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 7 / 12

More Complete Algorithm

Sample N random tests T .
Repeat while |T | < budget:

I Train generator G on high-fitness samples of T .

I Train analyzer A on T .
I Sample G for tests and estimate their fitness using A.
I Select the test t with best estimated fitness.
I Execute t on the SUT to learn its true fitness.
I Add t to T .

N.B. We execute the best test t on the SUT in order to find more
training data for A. Without this the estimates of A can be unreliable.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 8 / 12

More Complete Algorithm

Sample N random tests T .
Repeat while |T | < budget:

I Train generator G on high-fitness samples of T .
I Train analyzer A on T .

I Sample G for tests and estimate their fitness using A.
I Select the test t with best estimated fitness.
I Execute t on the SUT to learn its true fitness.
I Add t to T .

N.B. We execute the best test t on the SUT in order to find more
training data for A. Without this the estimates of A can be unreliable.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 8 / 12

More Complete Algorithm

Sample N random tests T .
Repeat while |T | < budget:

I Train generator G on high-fitness samples of T .
I Train analyzer A on T .
I Sample G for tests and estimate their fitness using A.

I Select the test t with best estimated fitness.
I Execute t on the SUT to learn its true fitness.
I Add t to T .

N.B. We execute the best test t on the SUT in order to find more
training data for A. Without this the estimates of A can be unreliable.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 8 / 12

More Complete Algorithm

Sample N random tests T .
Repeat while |T | < budget:

I Train generator G on high-fitness samples of T .
I Train analyzer A on T .
I Sample G for tests and estimate their fitness using A.
I Select the test t with best estimated fitness.

I Execute t on the SUT to learn its true fitness.
I Add t to T .

N.B. We execute the best test t on the SUT in order to find more
training data for A. Without this the estimates of A can be unreliable.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 8 / 12

More Complete Algorithm

Sample N random tests T .
Repeat while |T | < budget:

I Train generator G on high-fitness samples of T .
I Train analyzer A on T .
I Sample G for tests and estimate their fitness using A.
I Select the test t with best estimated fitness.
I Execute t on the SUT to learn its true fitness.

I Add t to T .

N.B. We execute the best test t on the SUT in order to find more
training data for A. Without this the estimates of A can be unreliable.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 8 / 12

More Complete Algorithm

Sample N random tests T .
Repeat while |T | < budget:

I Train generator G on high-fitness samples of T .
I Train analyzer A on T .
I Sample G for tests and estimate their fitness using A.
I Select the test t with best estimated fitness.
I Execute t on the SUT to learn its true fitness.
I Add t to T .

N.B. We execute the best test t on the SUT in order to find more
training data for A. Without this the estimates of A can be unreliable.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 8 / 12

More Complete Algorithm

Sample N random tests T .
Repeat while |T | < budget:

I Train generator G on high-fitness samples of T .
I Train analyzer A on T .
I Sample G for tests and estimate their fitness using A.
I Select the test t with best estimated fitness.
I Execute t on the SUT to learn its true fitness.
I Add t to T .

N.B. We execute the best test t on the SUT in order to find more
training data for A. Without this the estimates of A can be unreliable.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 8 / 12

The Other Issue

We find a training batch for G by sampling T in a biased way, i.e.,
high-fitness tests have higher chance of being included in the batch
(repetitions possible).

Details in the paper.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 9 / 12

The Other Issue

We find a training batch for G by sampling T in a biased way, i.e.,
high-fitness tests have higher chance of being included in the batch
(repetitions possible).
Details in the paper.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 9 / 12

Intuition

The intuition is that over time A gets more accurate and thus more
high-fitness tests get included in the training batch of G . Thus G
should be able to learn a distribution on high-fitness tests.

If the validation task is not too difficult, it is expected that the test
suite generated will contain falsifying tests.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 10 / 12

Intuition

The intuition is that over time A gets more accurate and thus more
high-fitness tests get included in the training batch of G . Thus G
should be able to learn a distribution on high-fitness tests.
If the validation task is not too difficult, it is expected that the test
suite generated will contain falsifying tests.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 10 / 12

Experimental Validation

We have conducted an experiment comparing our approach with a
Random search and a genetic algorithm in the context of the SBST
2021 CPS Tool Competition. See the paper for details.
The results indicate that we can achieve state of the art performance.

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 11 / 12

Thank You

Thank you for your attention!

Jarkko Peltomäki Wasserstein Generative Adversarial Networks for... 12 / 12

