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Context

Aim: online test suite generation using generative adversarial
networks (GANs).

We assume that we have a system under test (SUT) S which is a
deterministic (black-box) mapping I → Rm where I ⊆ Rn.
We assume that our requirements for the SUT are given as a fitness
function f : I → [0, 1] such that an test t ∈ I falsifies the
requirements if and only if f (t) = 1 (high-fitness ↔ challenging test).
We assume that executions are expensive, so we want to avoid calls
S(t).
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Generative Adversarial Networks

Let P be a probability distribution on the input space I.

A generator G is a mapping G : I ′ ⊆ Rd → I such that G transforms
the, say, uniform distribution on I ′ to P on I. That is, sampling
uniformly on I ′ produces samples on I according to P via the map G .
A Wasserstein generative adversarial network (WGAN) is a way to
find such a G based on a large data sample from P.
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WGANs and Testing

For validation, it would be desirable to have a WGAN trained on the
uniform distribution on

{t ∈ I : f (t) > 1− ε}

for a small ε (this is the set of challenging tests).
Sampling from such a WGAN yields a good test suite.
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Problem

Problem: We do not assume to have a large data sample for training
a WGAN, so how do we train a WGAN?
Solution: online training of a WGAN (our proposal).
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Broad Ideas

Obtain a random sample T of tests.

Train a WGAN G on tests of T with “high-fitness”.
Use G to sample a “good” new test t.
Add t to T and retrain.
Repeat until |T | is large enough (budget exhausted).

Two issues:
What does “high-fitness” mean?
How to determine that a candidate test is “good”, that is, how to
ensure that adding it to T drives G to learn how to sample
high-fitness tests?
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Solution to Second Issue

Solution: train an analyzer A (a neural network) for the mapping
t 7→ f (t) using T .

The analyzer can estimate the fitness of a test without executing it
on the SUT.
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More Complete Algorithm

Sample N random tests T .
Repeat while |T | < budget:

I Train generator G on high-fitness samples of T .

I Train analyzer A on T .
I Sample G for tests and estimate their fitness using A.
I Select the test t with best estimated fitness.
I Execute t on the SUT to learn its true fitness.
I Add t to T .

N.B. We execute the best test t on the SUT in order to find more
training data for A. Without this the estimates of A can be unreliable.
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The Other Issue

We find a training batch for G by sampling T in a biased way, i.e.,
high-fitness tests have higher chance of being included in the batch
(repetitions possible).

Details in the paper.
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Intuition

The intuition is that over time A gets more accurate and thus more
high-fitness tests get included in the training batch of G . Thus G
should be able to learn a distribution on high-fitness tests.

If the validation task is not too difficult, it is expected that the test
suite generated will contain falsifying tests.
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Experimental Validation

We have conducted an experiment comparing our approach with a
Random search and a genetic algorithm in the context of the SBST
2021 CPS Tool Competition. See the paper for details.
The results indicate that we can achieve state of the art performance.
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Thank You

Thank you for your attention!
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