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WOGAN

WOGAN is a general test suite generation algorithm which utilizes
generative adversarial networks and neural networks.
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Inputs and Outputs for BeamNG.research
We use the curvature representation for roads as in Frenetic 2021
with step size 15 (map 200× 200).

I Makes random search possible.
All roads start from the middle of the bottom of the map and point
initially up.

I The output of the simulation should be rotation and translation
invariant.

We fix the roads to have 6 points (5 curvature values).
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I This is an arbitrary decision. Small dimension makes learning with NNs
easier, but higher dimensions allow more varied roads.
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Inputs and Outputs for BeamNG.research

We use as the output the maximum body out of lane percentage
(BOLP) during the simulation.

I Signal output and distances to lane edges also available, but we did not
use them.

Jarkko Peltomäki WOGAN at the SBST 2022 CPS Tool Competition 4 / 9



Inputs and Outputs for BeamNG.research

We use as the output the maximum body out of lane percentage
(BOLP) during the simulation.

I Signal output and distances to lane edges also available, but we did not
use them.

Jarkko Peltomäki WOGAN at the SBST 2022 CPS Tool Competition 4 / 9



Generators

Consider the set A ⊆ I of inputs.

A generator on A is a model which can sample from the uniform
distribution on A.
Such a generator is trained based on a sample from A.
WOGAN trains online a generator on

{t ∈ I : BOLP(t) > 1− ε}

for some small ε.
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The WOGAN Algorithm

Sample N random tests T .
Repeat while |T | < budget:

I Train generator G on high-BOLP samples of T .

I Train analyzer A on T for the mapping t 7→ BOLP(t).
I Sample G for tests and estimate their BOLP using A.
I Select the test t with best estimated BOLP.
I Execute t on the SUT to learn its true BOLP.
I Add t to T .

N.B. We execute the best test t on the SUT in order to find more
training data for A. Without this the estimates of A can be unreliable.
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Intuition

The intuition is that over time A gets more accurate and thus more
high-BOLP tests get included in the training batch of G . Thus G
should be able to learn a distribution on high-BOLP tests.
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Some Further Details

We train the generator as a Wasserstein generative adversarial
network (WGAN) as it is empirically known to be able to produce
varied samples (should be good for road diversity).

WOGAN is a general-purpose algorithm the only domain knowledge
we use is the input representation.
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Experimental Validation

WOGAN among the best performing entries (better in BeamNG.AI
and not so good in DAVE-2).

We are quite satisfied: WGAN enabled us diverse tests and we got
good results without much domain knowledge.
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