
Testing cyber-physical-systems with explicit output
coverage

Jarkko Peltomäki

Information Technology
Åbo Akademi University

27.5.2024

Joint work with J. Winsten, M. Methais, and I. Porres

Jarkko Peltomäki Testing cyber-physical-systems with... 1 / 15



CPS Testing
A cyber-physical system (CPS) is a function M : I → O, where I
(O) is the input (output) space of M.
A requirement φ for a CPS is a requirement the CPS should satisfy
whenever it is operated.
Here we assume that a monitor ρ is given for φ to decide if the
system behavior for a test t ∈ I complies with φ.
Formally, ρ is a function I × O → [0, 1] with the interpretations:

▶ M does not comply with φ for a test t ∈ I if and only if
ρ(t, M(t)) = 0,

▶ if ρ(t, M(t)) > 0, the smaller ρ(t, M(t)) is, the closer t is in not
complying with φ.

The latter condition ensures that we can find noncomplying inputs by
minimizing ρ. For example, if φ is given as a signal temporal logic
(STL) formula, ρ can be taken as appropriately scaled STL robustness
monitor.
We scale the monitor to [0, 1] so that machine learning models can be
used. Otherwise it might not be necessary.

Jarkko Peltomäki Testing cyber-physical-systems with... 2 / 15



A Running Example: BeamNG.tech

The SBST 2021 workshop introduces the BeamNG.tech problem:
create roads for a driving agent such that the agent drives out of its
designated lane.
Formally, input is a sequence of control points (fixed length) that
determine a road, output is the body-out-of-lane percentage (BOLP)
signal, and the requirement is □BOLP(t) ≤ 0.95.
Monitor can be taken to be min{1, max{0, 1 − maxt BOLP(t)/0.95}}.

Jarkko Peltomäki Testing cyber-physical-systems with... 3 / 15



The Requirement Falsification Problem

Given a CPS M with requirement φ and monitor ρ, the requirement
falsification problem (RF-problem) asks to falsify φ, that is, to find
t ∈ I such that ρ(t) = 0 if such a t exists.

▶ “Find a road so that the car will drive out of its designated lane.”
A well-studied problem with dozens of algorithms solving it. For
example, the annual ARCH-COMP friendly competition welcomes
algorithms to be compared on a selection of CPS benchmarks.

Jarkko Peltomäki Testing cyber-physical-systems with... 4 / 15



Finding Several Falsifying Inputs

In addition to finding a single falsifying input, it interesting to see the
system fail in varied situations. For example, having multiple
falsifying inputs may help in detecting the fault root cause.
“Varied” can mean multiple things. We might be interested in
structurally different tests (variety in the input space), different
output behaviors (variety in the output space), different internal
behavior (variety in the state space), or a combination of these.
Variety can be specified

▶ Implicitly: variety by maximizing dissimilarity to previous tests.
▶ Explicitly: the desired variety is explicitly described.

Here we focus on “explicit output coverage”, that is, we look for
different output behaviors explicitly determined by a set of several
requirements. We target black-box systems so, in particular, we do
not have access to the internals of the system.

Jarkko Peltomäki Testing cyber-physical-systems with... 5 / 15



The Output Requirement Problem

The output requirement problem is about falsifying a set
Φ = {φ1, . . . , φN} of output requirements related to a single CPS M.
A witness for Φ is a set of test whose tests together falsify all φi .

Jarkko Peltomäki Testing cyber-physical-systems with... 6 / 15



The Output Requirement Problem

We are interested in algorithms that solve the output requirement
problem.
A straightforward solution is to take an algorithm solving the
RF-problem and to use it sequentially on each requirement.
This approach might be inefficient when the requirements are related:
the process of finding a single output that satisfies one formula can
be beneficial in finding inputs for the remaining requirements.
Efficiency can be measured, e.g., on the number of tests that need to
be executed to find a witness or on the total time to find a witness.
Here we focus on the former.

Jarkko Peltomäki Testing cyber-physical-systems with... 7 / 15



BeamNG.tech Continued

The BeamNG.tech simulator has an additional output SA(t) which is
the driving agent’s steering angle signal during the simulation.
We want to observe the failure of keeping the lane with various
steering angles. This is captured by the requirement

γ(α, β) = ♢(BOLP(t) ≥ 0.95 ∧ α ≤ SA(t) ≤ β).

Here we use the requirements φ1 = γ(−120◦, −72◦),
φ2 := γ(−72◦, −24◦), φ3 := γ(−24◦, 24◦), φ4 := γ(24◦, 72◦),
φ5 := γ(72◦, 120◦) which correspond to splitting the interval
[−120◦, 120◦] into five pieces.
A witness is a set of 5 tests that together make the driver fail with
steering angles in the given intervals.

Jarkko Peltomäki Testing cyber-physical-systems with... 8 / 15



Solving the Output Requirement Problem Efficiently

We propose an explicit output coverage (EOC) algorithm that solves
the output coverage problem efficiently using generative machine
learning.
Let us first look at WOGAN which is a RF-algorithm using generative
ML.

Jarkko Peltomäki Testing cyber-physical-systems with... 9 / 15



WOGAN (P., Spencer, Porres 2022)

Consider a requirement φ with monitor ρ (we want to find test t such
that ρ(t, M(t)) = 0).
The idea of WOGAN is to train a generator G that is a probability
distribution supported on tests that have low monitor value.
The generator G is then sampled until a test t with ρ(t, M(t)) = 0 is
found.
The generator is modeled as a Wasserstein Generative Adversarial
Network (WGAN) which is trained to minimize the Wasserstein
distance between the generator’s distribution and the uniform
distribution on tests t with ρ(t, M(t)) = 0.
The WOGAN algorithm achieves the training online by augmenting
the WGAN training data with tests with lower and lower monitor
value.
WOGAN has been successful in falsification (SBST 2022, SBFT
2023,2024).

Jarkko Peltomäki Testing cyber-physical-systems with... 10 / 15



EOC Main Ideas

Say we have requirements φ1, . . ., φN with monitors ρ1, . . ., ρN .
Create and enable N WOGAN generators G1, . . ., GN , one for each φi .
Sample one generator Gi for a test t (i selected uniformly randomly).
If ρj(t, M(t)) = 0 for some j , mark φj satisfied and disable Gj
(monitor is fast to evaluate).
Train all enabled generators on the executed tests (we know the
monitor values of a test with respect to all requirements).

Jarkko Peltomäki Testing cyber-physical-systems with... 11 / 15



Intuitions

Even when ρj(t, M(t)) is large, it is possible that ρk(t, M(t)) is low.
This benefits the training of Gk .
All generators are used for sampling, but only one at a time (less test
executions per round).
Training can take as much as N times more resources when compared
to the training of a single generator, but we assume that evaluating
M(t) is slow, not the training of a generator.
The use of generative ML allows to utilize data related to a sample
from another generator. It is not always possible to do this (e.g., in
gradient descent).

Jarkko Peltomäki Testing cyber-physical-systems with... 12 / 15



Results

We used EOC to solve the output requirement problem for the
BeamNG.tech problem (5 requirements). We did
20 replicas, total execution budget 700.
Baseline algorithms used for comparison:

▶ Sequential Random Search (SRS): use 5 random searches sequentially
for each φi (budget 700/5 = 140 per search).

▶ Random Search (RS): sample 700 random tests and check which
requirements where satisfied.

▶ Sequential Falsification (SF): use WOGAN sequentially for each φi
(budget 700/5 = 140).

Jarkko Peltomäki Testing cyber-physical-systems with... 13 / 15



Results

SRS SF RS EOC
Algorithm

0.00

0.20

0.40

0.60

0.80

1.00

0.42

0.69

0.78

1.00

0.05

0.15
0.20

1.00

BeamNG: Coverage and Witness Frequency
Coverage
Witness Frequency

0 100 200 300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

BeamNG.tech: Survival Functions

SRS

SF

RS

EOC

Jarkko Peltomäki Testing cyber-physical-systems with... 14 / 15



Thank You for Your Attention

STGEM tool that implements EOC:
https://gitlab.abo.fi/stc/stgem (includes references to previous
works).

Jarkko Peltomäki Testing cyber-physical-systems with... 15 / 15

https://gitlab.abo.fi/stc/stgem

